Document Type : Review articles

Authors

1 College of Pharmacy, University of Mosul, Mosul, Iraq

2 College of Pharmacy, Ninevah University, Mosul, Iraq

Abstract

The authors conducted an extensive literature search of the Science Direct, Scopus, PubMed, and Web of Science databases. Published studies and original articles published in reputed peer-reviewed journals reporting original research were considered. Different wound dressings show different properties and may have different applications depending on the types of wounds. Traditional wound dressings (like gauze), mainly used for clean and dry wounds with mild exudate, are cheap and affordable, however, they suffer from many limitations; including adherence to the skin, pain in removal, contamination with bacteria, and other obstacles. On the other hand, modern dressings have many advantages, such as the fact that they do not adhere to the wound, they are easily removed, and many other advantages. The introduction of nanotechnology in the field has accelerated the discovery and the applications, and many new pharmaceutical products for wound treatment will enter the market soon. Therefore, evaluating the advantages and limitations of different types of dressings and determining a suitable type of wound dressing to be applied is crucial. This article aims to explain the different types of wound healing agents or dressings available to treat acute or chronic wounds.

Keywords

Main Subjects

[1]         M. E. Okur, I. D. Karantas, Z. Senyigit, N. Ustundag Okur, and P. I. Siafaka, "Recent trends on wound management: New therapeutic choices based on polymeric carriers," Asian J Pharm Sci, vol. 15, no. 6, pp. 661-684, Nov 2020, doi: 10.1016/j.ajps.2019.11.008.
[2]         T. Velnar, T. Bailey, and V. Smrkolj, "The wound healing process: an overview of the cellular and molecular mechanisms," J Int Med Res, vol. 37, no. 5, pp. 1528-42, Sep-Oct 2009, doi: 10.1177/147323000903700531.
[3]         Z. Obagi, G. Damiani, A. Grada, and V. Falanga, "Principles of Wound Dressings: A Review," (in eng), Surg Technol Int, vol. 35, pp. 50-57, Nov 10 2019.
[4]         V. Brumberg, T. Astrelina, T. Malivanova, and A. Samoilov, "Modern Wound Dressings: Hydrogel Dressings," (in eng), Biomedicines, vol. 9, no. 9, Sep 16 2021, doi: 10.3390/biomedicines9091235.
[5]         S. Dhivya, V. V. Padma, and E. Santhini, "Wound dressings - a review," Biomedicine (Taipei), vol. 5, no. 4, p. 22, Dec 2015, doi: 10.7603/s40681-015-0022-9.
[6]         "Nanotechnology Approaches in Chronic Wound Healing," Advances in Wound Care, vol. 10, no. 5, pp. 234-256, 2021, doi: 10.1089/wound.2019.1094.
[7]         S. Jeong, G. S. Schultz, and D. J. Gibson, "Testing the influence of surfactant-based wound dressings on proteinase activity," Int Wound J, vol. 14, no. 5, pp. 786-790, Oct 2017, doi: 10.1111/iwj.12697.
[8]         S. Baranoski, "Choosing a wound dressing, part 1," Nursing, vol. 38, no. 1, pp. 60-1, Jan 2008, doi: 10.1097/01.NURSE.0000305919.47233.61.
[9]         P. Zahedi, I. Rezaeian, S.-O. Ranaei-Siadat, S.-H. Jafari, and P. Supaphol, "A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages," Polymers for Advanced Technologies, vol. 21, no. 2, pp. 77-95, 2010, doi: https://doi.org/10.1002/pat.1625.
[10]       Y. Liu, C. Li, Z. Feng, B. Han, D.-G. Yu, and K. Wang, "Advances in the Preparation of Nanofiber Dressings by Electrospinning for Promoting Diabetic Wound Healing," Biomolecules, vol. 12, no. 12, p. 1727, 2022. [Online]. Available: https://www.mdpi.com/2218-273X/12/12/1727.
[11]       M. Mir et al., "Synthetic polymeric biomaterials for wound healing: a review," Prog Biomater, vol. 7, no. 1, pp. 1-21, Mar 2018, doi: 10.1007/s40204-018-0083-4.
[12]       C. Shi et al., "Selection of Appropriate Wound Dressing for Various Wounds," (in English), Frontiers in Bioengineering and Biotechnology, Review vol. 8, 2020-March-19 2020, doi: 10.3389/fbioe.2020.00182.
[13]       M. Keshvardoostchokami, S. S. Majidi, P. Huo, R. Ramachandran, M. Chen, and B. Liu, "Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering," Nanomaterials, vol. 11, no. 1, p. 21, 2020.
[14]       R. Augustine et al., "Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing," Int J Biol Macromol, vol. 156, pp. 153-170, Aug 1 2020, doi: 10.1016/j.ijbiomac.2020.03.207.
[15]       A. Sood, M. S. Granick, and N. L. Tomaselli, "Wound Dressings and Comparative Effectiveness Data," Adv Wound Care (New Rochelle), vol. 3, no. 8, pp. 511-529, Aug 1 2014, doi: 10.1089/wound.2012.0401.
[16]       H. Lv, M. Zhang, P. Wang, X. Xu, Y. Liu, and D.-G. Yu, "Ingenious construction of Ni (DMG) 2/TiO2-decorated porous nanofibers for the highly efficient photodegradation of pollutants in water," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 650, p. 129561, 2022.
[17]       E. Özcan Bülbül, M. E. Okur, N. Üstündağ Okur, and P. I. Siafaka, "Chapter 2 - Traditional and advanced wound dressings: physical characterization and desirable properties for wound healing," in Natural Polymers in Wound Healing and Repair, M. K. Sah, N. Kasoju, and J. F. Mano Eds.: Elsevier, 2022, pp. 19-50.
[18]       L. G. Ovington, The well-dressed wound: an overview of dressing types. Health Management Publ., 1998.
[19]       S. K. Vimala Bharathi, P. Murugesan, J. A. Moses, and C. Anandharamakrishnan, "3.43 - Recent Trends in Nanocomposite Packaging Materials," in Innovative Food Processing Technologies, K. Knoerzer and K. Muthukumarappan Eds. Oxford: Elsevier, 2021, pp. 731-755.
[20]       S. Thomas, "A comparative study of twelve hydrocolloid dressings. Surgical Material Testing Laboratory technical notes," World Wide Wounds, 1997.
[21]       J. S. Boateng, K. H. Matthews, H. N. Stevens, and G. M. Eccleston, "Wound healing dressings and drug delivery systems: a review," J Pharm Sci, vol. 97, no. 8, pp. 2892-923, Aug 2008, doi: 10.1002/jps.21210.
[22]       L. Martin et al., "The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels," J Control Release, vol. 80, no. 1-3, pp. 87-100, Apr 23 2002, doi: 10.1016/s0168-3659(02)00005-6.
[23]       M. Rippon, P. Davies, and R. White, "Taking the trauma out of wound care: the importance of undisturbed healing," journal of wound care, vol. 21, no. 8, pp. 359-368, 2012.
[24]       P. Dahiya and R. Kamal, "Hyaluronic Acid: a boon in periodontal therapy," (in eng), N Am J Med Sci, vol. 5, no. 5, pp. 309-15, May 2013, doi: 10.4103/1947-2714.112473.
[25]       J. Su, J. Li, J. Liang, K. Zhang, and J. Li, "Hydrogel preparation methods and biomaterials for wound dressing," Life, vol. 11, no. 10, p. 1016, 2021.
[26]       M. A. M. Jahromi et al., "Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing," Advanced drug delivery reviews, vol. 123, pp. 33-64, 2018.
[27]       L. J. Borda, F. E. Macquhae, and R. S. Kirsner, "Wound Dressings: A Comprehensive Review," Current Dermatology Reports, vol. 5, no. 4, pp. 287-297, 2016/12/01 2016, doi: 10.1007/s13671-016-0162-5.
[28]       R. Laurano, M. Boffito, G. Ciardelli, and V. Chiono, "Wound dressing products: A translational investigation from the bench to the market," Engineered Regeneration, vol. 3, no. 2, pp. 182-200, 2022.
[29]       Y. Y. Wu et al., "Experimental Study on Effects of Adipose-Derived Stem Cell-Seeded Silk Fibroin Chitosan Film on Wound Healing of a Diabetic Rat Model," Ann Plast Surg, vol. 80, no. 5, pp. 572-580, May 2018, doi: 10.1097/SAP.0000000000001355.
[30]       R. S. Ambekar and B. Kandasubramanian, "Advancements in nanofibers for wound dressing: A review," European Polymer Journal, vol. 117, pp. 304-336, 2019/08/01/ 2019, doi: https://doi.org/10.1016/j.eurpolymj.2019.05.020.
[31]       S. Alven, S. Peter, Z. Mbese, and B. A. Aderibigbe, "Polymer-Based Wound Dressing Materials Loaded with Bioactive Agents: Potential Materials for the Treatment of Diabetic Wounds," Polymers (Basel), vol. 14, no. 4, Feb 14 2022, doi: 10.3390/polym14040724.
[32]       M. A.M. Jones MSc and L. S. M. B. o. Economics, "Are modern wound dressings a clinical and cost-effective alternative to the use of gauze?," Journal of Wound Care, vol. 15, no. 2, pp. 65-69, 2006, doi: 10.12968/jowc.2006.15.2.26886.
[33]       G. M. Bowen, G. L. White, Jr., and J. W. Gerwels, "Mohs micrographic surgery," Am Fam Physician, vol. 72, no. 5, pp. 845-8, Sep 1 2005. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/16156344.
[34]       A. Francesko, P. Petkova, and T. Tzanov, "Hydrogel Dressings for Advanced Wound Management," Curr Med Chem, vol. 25, no. 41, pp. 5782-5797, 2018, doi: 10.2174/0929867324666170920161246.
[35]       I.-M. Freedberg, A. Z. Eisen, K. F. Austen, L. A. Goldsmith, and S. I. Katz, "“Fitzpatrick’s Dermatology in General Medicine” 6. Bask›," 2003.
[36]       G. Dabiri, E. Damstetter, and T. Phillips, "Choosing a Wound Dressing Based on Common Wound Characteristics," Adv Wound Care (New Rochelle), vol. 5, no. 1, pp. 32-41, Jan 1 2016, doi: 10.1089/wound.2014.0586.
[37]       J. C. Dumville, S. O'Meara, S. Deshpande, and K. Speak, "Hydrogel dressings for healing diabetic foot ulcers," Cochrane Database Syst Rev, no. 9, p. CD009101, Sep 7 2011, doi: 10.1002/14651858.CD009101.pub2.
[38]       V. Jones, J. E. Grey, and K. G. Harding, "Wound dressings," BMJ, vol. 332, no. 7544, pp. 777-80, Apr 1 2006, doi: 10.1136/bmj.332.7544.777.
[39]       A. Thomas, K. G. Harding, and K. Moore, "Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-alpha," Biomaterials, vol. 21, no. 17, pp. 1797-802, Sep 2000, doi: 10.1016/s0142-9612(00)00072-7.
[40]       L. A. Pirone, L. L. Bolton, K. A. Monte, and R. J. Shannon, "Effect of calcium alginate dressings on partial-thickness wounds in swine," J Invest Surg, vol. 5, no. 2, pp. 149-53, Apr-Jun 1992, doi: 10.3109/08941939209012431.
[41]       S. Baranoski, "Choosing a wound dressing, part 2," Nursing, vol. 38, no. 2, pp. 14-5, Feb 2008, doi: 10.1097/01.NURSE.0000309710.85229.59.
[42]       P. Beldon, "How to recognise, assess and control wound exudate," Journal of Community Nursing, vol. 30, no. 2, 2016.
[43]       T. Abdelrahman and H. Newton, "Wound dressings: principles and practice," Surgery (oxford), vol. 29, no. 10, pp. 491-495, 2011.
[44]       G. Sharma, S. W. Lee, O. Atanacio, J. Parvizi, and T. K. Kim, "In search of the optimal wound dressing material following total hip and knee arthroplasty: a systematic review and meta-analysis," Int Orthop, vol. 41, no. 7, pp. 1295-1305, Jul 2017, doi: 10.1007/s00264-017-3484-4.
[45]       M. Ramos-e-Silva and M. C. Ribeiro de Castro, "New dressings, including tissue-engineered living skin," Clin Dermatol, vol. 20, no. 6, pp. 715-23, Nov-Dec 2002, doi: 10.1016/s0738-081x(02)00298-5.
[46]       P. Trucillo and E. Di Maio, "Classification and Production of Polymeric Foams among the Systems for Wound Treatment," Polymers, vol. 13, no. 10, p. 1608, 2021. [Online]. Available: https://www.mdpi.com/2073-4360/13/10/1608.
[47]       S. Seaman, "Dressing selection in chronic wound management," J Am Podiatr Med Assoc, vol. 92, no. 1, pp. 24-33, Jan 2002, doi: 10.7547/87507315-92-1-24.
[48]       H. Vermeulen, D. T. Ubbink, A. Goossens, R. de Vos, and D. A. Legemate, "Systematic review of dressings and topical agents for surgical wounds healing by secondary intention," Br J Surg, vol. 92, no. 6, pp. 665-72, Jun 2005, doi: 10.1002/bjs.5055.
[49]       F. Meuleneire, "A vapour-permeable film dressing used on superficial wounds," Br J Nurs, vol. 23, no. 15, pp. S36, S38-43, Aug 12 2014, doi: 10.12968/bjon.2014.23.Sup15.s36.
[50]       K. J. B. Kus and E. S. Ruiz, "Wound Dressings – A Practical Review," Current Dermatology Reports, vol. 9, no. 4, pp. 298-308, 2020/12/01 2020, doi: 10.1007/s13671-020-00319-w.
[51]       E. A. Kamoun, E. S. Kenawy, and X. Chen, "A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings," J Adv Res, vol. 8, no. 3, pp. 217-233, May 2017, doi: 10.1016/j.jare.2017.01.005.
[52]       X. Yang et al., "Fabricating antimicrobial peptide-immobilized starch sponges for hemorrhage control and antibacterial treatment," Carbohydrate polymers, vol. 222, p. 115012, 2019.
[53]       Y. Feng et al., "Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing," Carbohydrate polymers, vol. 216, pp. 17-24, 2019.
[54]       C. Chen, L. Liu, T. Huang, and Q. Wang, "Bubble template fabrication of chitosan/poly (vinyl alcohol) sponges for wound dressing applications," International Journal of Biological Macromolecules, vol. 62, pp. 188-193, 2013.
[55]       D. A. Severinov, S. V. Lazarenko, K. A. Sotnikov, V. V. Pohozhay, P. V. Ansimova, and V. A. Lipatov, "In vitro Evaluation of Performance Properties of Sponge Hemostatic Dressings (Review)," (in eng), Sovrem Tekhnologii Med, vol. 12, no. 1, pp. 139-146, 2020, doi: 10.17691/stm2020.12.1.16.
[56]       R. Ma et al., "Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation," Composites Part B: Engineering, vol. 167, pp. 396-405, 2019/06/15/ 2019, doi: https://doi.org/10.1016/j.compositesb.2019.03.006.
[57]       P. D. Krishnan et al., "Silver Nanomaterials for Wound Dressing Applications," Pharmaceutics, vol. 12, no. 9, Aug 28 2020, doi: 10.3390/pharmaceutics12090821.
[58]       C. Marambio-Jones and E. Hoek, "A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment," Journal of nanoparticle research, vol. 12, no. 5, pp. 1531-1551, 2010.
[59]       R. Rakhshaei and H. Namazi, "A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel," Materials Science and Engineering: C, vol. 73, pp. 456-464, 2017/04/01/ 2017, doi: https://doi.org/10.1016/j.msec.2016.12.097.
[60]       S. Tort, F. Acarturk, and A. Besikci, "Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing," Int J Pharm, vol. 529, no. 1-2, pp. 642-653, Aug 30 2017, doi: 10.1016/j.ijpharm.2017.07.027.
[61]       P. Heydari, J. Varshosaz, A. Zargar Kharazi, and S. Karbasi, "Preparation and evaluation of poly glycerol sebacate/poly hydroxy butyrate core‐shell electrospun nanofibers with sequentially release of ciprofloxacin and simvastatin in wound dressings," Polymers for Advanced Technologies, vol. 29, no. 6, pp. 1795-1803, 2018.
[62]       H. Hajilou, M. R. Farahpour, and H. Hamishehkar, "Polycaprolactone nanofiber coated with chitosan and Gamma oryzanol functionalized as a novel wound dressing for healing infected wounds," Int J Biol Macromol, vol. 164, pp. 2358-2369, Dec 1 2020, doi: 10.1016/j.ijbiomac.2020.08.079.
[63]       Y. Zhao, Y. Qiu, H. Wang, Y. Chen, S. Jin, and S. Chen, "Preparation of nanofibers with renewable polymers and their application in wound dressing," International Journal of Polymer Science, vol. 2016, 2016.
[64]       R. Uppal, G. N. Ramaswamy, C. Arnold, R. Goodband, and Y. Wang, "Hyaluronic acid nanofiber wound dressing--production, characterization, and in vivo behavior," J Biomed Mater Res B Appl Biomater, vol. 97, no. 1, pp. 20-9, Apr 2011, doi: 10.1002/jbm.b.31776.
[65]       R. C. Rowe, P. J. Sheskey, S. n. C. Owen, and American Pharmacists Association., Handbook of pharmaceutical excipients / edited by Raymond C. Rowe, Paul J. Sheskey, Siân C. Owen, 5th ed. London ; Greyslake, IL
Washington, DC: Pharmaceutical Press ;
American Pharmacists Association, 2006, pp. xxi, 918 p.
[66]       E. B. Fowler et al., "Evaluation of pluronic polyols as carriers for grafting materials: study in rat calvaria defects," J Periodontol, vol. 73, no. 2, pp. 191-7, Feb 2002, doi: 10.1902/jop.2002.73.2.191.
[67]       M. Padilla, G. T. Clark, and R. L. Merrill, "Topical medications for orofacial neuropathic pain: a review," J Am Dent Assoc, vol. 131, no. 2, pp. 184-95, Feb 2000, doi: 10.14219/jada.archive.2000.0146.
[68]       J. J. Escobar-Chavez, M. Lopez-Cervantes, A. Naik, Y. N. Kalia, D. Quintanar-Guerrero, and A. Ganem-Quintanar, "Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations," J Pharm Pharm Sci, vol. 9, no. 3, pp. 339-58, 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/17207417.
[69]       V. Kant et al., "Topical pluronic F-127 gel application enhances cutaneous wound healing in rats," Acta Histochemica, vol. 116, no. 1, pp. 5-13, 2014/01/01/ 2014, doi: https://doi.org/10.1016/j.acthis.2013.04.010.
[70]       A. Dogan et al., "Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo," Biol Trace Elem Res, vol. 162, no. 1-3, pp. 72-9, Dec 2014, doi: 10.1007/s12011-014-0104-7.
[71]       S. L. Percival, R. Chen, D. Mayer, and A. M. Salisbury, "Mode of action of poloxamer-based surfactants in wound care and efficacy on biofilms," Int Wound J, vol. 15, no. 5, pp. 749-755, Oct 2018, doi: 10.1111/iwj.12922.
[72]       A. Hebeish, M. Hashem, M. M. El-Hady, and S. Sharaf, "Development of CMC hydrogels loaded with silver nano-particles for medical applications," Carbohydr Polym, vol. 92, no. 1, pp. 407-13, Jan 30 2013, doi: 10.1016/j.carbpol.2012.08.094.
[73]       P. Basu, A. Repanas, A. Chatterjee, B. Glasmacher, U. NarendraKumar, and I. Manjubala, "PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications," Materials Letters, vol. 195, pp. 10-13, 2017/05/15/ 2017, doi: https://doi.org/10.1016/j.matlet.2017.02.065.
[74]       R. Barbucci, A. Magnani, and M. Consumi, "Swelling Behavior of Carboxymethylcellulose Hydrogels in Relation to Cross-Linking, pH, and Charge Density," Macromolecules, vol. 33, no. 20, pp. 7475-7480, 2000/10/01 2000, doi: 10.1021/ma0007029.
[75]       P. Basu, U. Narendrakumar, R. Arunachalam, S. Devi, and I. Manjubala, "Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats," ACS Omega, vol. 3, no. 10, pp. 12622-12632, Oct 31 2018, doi: 10.1021/acsomega.8b02015.
[76]       A. C. N. Marchianti et al., "Gel formulations of Merremia mammosa (Lour.) accelerated wound healing of the wound in diabetic rats," Journal of Traditional and Complementary Medicine, vol. 11, no. 1, pp. 38-45, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.jtcme.2019.12.002.
[77]       E. V. Y. Veronica and R. Dwiastuti, "FORMULATION AND EVALUATION OF WOUND HEALING GEL OF WHITE LEADTREE (LEUCAENA LEUCOCEPHALA (LAM.) DE WIT.) LEAVES EXTRACT," International Journal of Applied Pharmaceutics, pp. 275-280, 01/07 2022, doi: 10.22159/ijap.2022v14i1.42126.
[78]       J. Necas, L. Bartosikova, P. Brauner, and J. Kolar, "Hyaluronic acid (hyaluronan): a review," Veterinarni medicina, vol. 53, no. 8, pp. 397-411, 2008.
[79]       G. Abatangelo, V. Vindigni, G. Avruscio, L. Pandis, and P. Brun, "Hyaluronic Acid: Redefining Its Role," Cells, vol. 9, no. 7, p. 1743, 2020. [Online]. Available: https://www.mdpi.com/2073-4409/9/7/1743.
[80]       H. Cortes et al., "Hyaluronic acid in wound dressings," Cell Mol Biol (Noisy-le-grand), vol. 66, no. 4, pp. 191-198, Jun 25 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/32583795.
[81]       J. Voigt and V. R. Driver, "Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials," Wound Repair Regen, vol. 20, no. 3, pp. 317-31, May-Jun 2012, doi: 10.1111/j.1524-475X.2012.00777.x.